Conveyor Equipment Manufacturers Association (CEMA)

Safety Best Practices Recommendation
CEMA SBP-003 (2008)

Design and Application of Spill Guarding for Unit Handling Conveyors

Provided as a service to the Conveying Industry by the CEMA Engineering Conference

Original Publication Date: August 14, 2008
DISCLAIMER

The information provided in this document is advisory only. These recommendations are provided by CEMA in the interest of promoting safety in the workplace. These recommendations are general in nature and are not intended as a substitute for a thorough safety program. Users should seek the advice, supervision or consultation of qualified engineers or other safety professionals. Any use of this document, the information contained herein, or any other CEMA publication may only be made with the agreement and understanding that the user and the user’s company assume full responsibility for the design, safety, specifications, suitability and adequacy of the system component, or mechanical or electrical device designed or manufactured using this information. The user and the user’s company understand and agree that CEMA, its member companies, its officers, agents and employees shall not be liable in any manner under any theory of liability for the user or user’s reliance on these recommendations. The users and the user’s company agree to release, hold harmless and indemnify CEMA, its member companies, successors, assigns, officers, agents and employees from any and all claims of liability, costs, fees (including attorney’s fees), or damages arising in any way out of the use of this information. CEMA and its member companies, successors, assigns, officers, agents and employees make no representations or warranties whatsoever, either express or implied, about the information contained in this document, including, but not limited to, representations or warranties that the information and recommendations contained herein conform to any federal, state or local laws, regulations, guidelines or ordinances.
A. PURPOSE

The purpose of this document is to outline a standardized approach to the selection and application of common guardrail, safety netting, and accessories used to contain product (cartons and totes excluding stacked loads) transported on unit handling conveyors.

These approaches flow from the collective experience of the member companies of the Unit Handling Section of the Conveyor Equipment Manufacturers Association (CEMA). Their recommendations have been compiled herein to help ensure a safe operating environment for personnel working next to or below unit handling conveyors.

The types of products being handled and location of the conveyor equipment will affect the selection of containment devices. Particular attention must be given to overhead conveyors that pass over aisle ways and work zones. These areas usually require additional safe guards to protect personnel from falling objects caused by product jams. Plastic tote pans commonly used to transport loose items are especially vulnerable to jam induced ejection from the conveyor because of their tapered sides and low coefficient of friction.

Safety should always be the primary concern when determining the necessary precautions for any situation.

B. DEFINITIONS

The definitions of terms used within this standard will conform to those identified in CEMA Standard #102 “Conveyor Terms and Definitions” except as redefined within this section. Additional terms not currently found in CEMA 102 are defined here. The term guide or guard rail represent the same meaning in this document.

2/3rds Rule – Rule of thumb adopted by the unit handling industry requiring the height of guard rail to be at least 2/3rds the height of the tallest product on the conveyor. Applies to conveying surfaces 8'-0” and higher above the floor except as determined by risk assessment.

Factors that influence package stability and should be considered during a risk assessment:
- Center of gravity- In center of package or lower
- Weight
- Package form factor (shape)
- Loose straps, cord, tape, labels, excess glue, open flaps, irregular sides and bottoms
- Totes, cartons, trays draft and lips

Content spillage and minimum product height should be considered when a space is required between the bottom of the guardrail and the top of the side rail.
Adjustable Guard Rail – *Guard rail* attached to the conveyor frame with adjustable mounting brackets that allow horizontal and vertical adjustment. Typically available in single (one rail) or double high (two rail) configurations.

Fixed Guard Rail – *Guard rail* attached directly to the conveyor frame (no adjustment). Can be spaced up for photoeyes or product viewing. Available in low (angle) or high (channel) configurations.

Safety Netting – Nylon or wire mesh used to construct a *screen guard* for overhead conveyors. Can be hung from conveyor or overhead building structure.

C. HUMAN FACTOR CONSIDERATIONS

People and their observed tendencies are the reasons that CEMA has found it necessary to address this topic when dealing with netting. In operations areas where personnel are familiar with the conveying equipment, their duties and designated routes of travel have a propensity to shortcut the designated routes into non-designated areas. There is a great potential for abuse of the most basic safety rules. Temptations for personnel to shortcut designated routes often occur when traveling to or from break rooms, restrooms, ingress and egress to work stations, and adjacent work areas. Continuous analysis of worker requirements for movement and access in the conveyor operating areas is necessary. Proper application and training concerning the use of
designated pathways throughout the operations areas is essential. Whenever changes or movement of equipment are made, an evaluation of the overhead equipment, and whether safety netting is required, should be made. The application of netting at the needed locations, along with proper training in the use of designated pathways, can go along way towards promoting workplace safety.

D. GENERAL DESIGN PARAMETERS

Guard Rail – The two most commonly used items to contain product on unit handling conveyors are guard rail and safety netting. Guard rail is generally attached directly to the conveyor side frame and can be fixed position or adjustable.

Fixed Guard Rail - Fixed guard rail can be low (angle type) or high (channel type). Low guard rail is generally used in loading or picking areas and is not recommended for overhead applications except in the case of inner lanes of multi-lane conveyor where safety netting is also used. High guard rail is recommended for all conveying surfaces 8'-0" and higher above the floor or platform. The guard rail height should be at least two thirds the height of the tallest product on the conveyor. This rule of thumb is commonly referred to as the 2/3rds Rule. Products with a high center of gravity may require higher guard rail to prevent spillage.

Adjustable Guard Rail - Adjustable guard rail can be adjusted both horizontally and vertically from the conveyor side frame for varying product widths and heights. Typically, the guard rail is clamped to support rods which in turn are clamped to the conveyor side frame. Adjustments are made by loosening the clamps, re-positioning the guard rail or support rods, and then re-tightening the clamps. Small channels in a single or double high configuration are generally used for adjustable guard rail. The guard rail(s) must be vertically positioned to contain the shortest and tallest products on the conveyor. In some cases, it may be necessary to add a center guard rail to prevent certain products from passing between the top and bottom guard rails.
Safety Netting – The application of safety netting must be evaluated for each specific area of a conveyor system. Careful consideration should be given for conveyors over worker access areas and walkways. A combination of high guard rail and safety netting may be required in these areas, particularly when there is a possibility for product jams on the conveyor. Spillage from product jams generally occurs when product continues to be driven into a jammed or stopped condition downstream. Curves, spurs, transfers, and merge areas downstream of belt conveyors are particularly vulnerable to product jams and should be appropriately safeguarded against spillage. Product spillage presents a particular hazard to personnel around and below the affected area.

Design of netting systems is based upon the following parameters:
Use fireproof materials whenever possible

Common netting materials examples:
Braided Nylon
Polyethylene
Wire

Heavy gage construction grade plastic woven into a mesh pattern. Light gage plastic is not acceptable.

<table>
<thead>
<tr>
<th>Mesh Size</th>
<th>Material</th>
<th>Capacity</th>
<th>Cord Strength</th>
<th>Fire Retardant</th>
</tr>
</thead>
<tbody>
<tr>
<td>1” x 1”</td>
<td>Nylon</td>
<td>1000 ft lbs</td>
<td>190 lbs</td>
<td>X</td>
</tr>
</tbody>
</table>

Product Size and Weight – Netting must be able to withstand impact of the maximum carton weight falling from the top of the guardrail to the netting elevation. Capacity value from catalog must be greater than the product of maximum carton weight and the maximum fall distance.

\[\text{Capacity} > \text{Maximum Carton Weight} \times \text{Maximum Fall Distance} \]

Netting Height – The design must allow for sufficient space for several product units collecting in netting area. The height of the netting needs to be 2/3 the height of the tallest package higher than the height of the guardrail.

Mesh Size – Net mesh size determined by the smallest item to be contained.

Netting mesh size should be small enough not to allow product or conveyor rollers to pass through the netting. Recommended mesh size is typically 1” x 1”. This size will not allow any loose 1.9” diameter rollers to pass through the netting. Small items in totes or cartons need to be reviewed for ability to pass through netting mesh.
Spacing of Supports – Spacing of supports for netting should minimize sag when loaded and allow for ample number of connection points to prevent failure of netting at maximum loading. Aircraft cable style mounting is recommended to distribute loading of netting at connection points. Connections should be made with snap hooks. Number of connections should be reviewed with netting manufacturer to obtain full strength of the netting.

Signage – The safety netting system, including the netting and related hardware, is not designed to support personnel. Installations should provide signage warning personnel to keep off the safety netting.

Design Considerations

Design the netting to support the heaviest product loads

Vertical netting can be used above the guard rail as an alternative to sheet metal

Nutting must be removable for cleanout

Solid pans can be used for underguarding

Avoid the sharp edge commonly produced by cutting plastic net

When using plastic netting as equipment under guarding as well a spill guarding consider that the plastic material can be deflected allowing access to moving machinery.

Minimize deflection by using fasteners at shorter intervals
Example Spill Guarding Configurations: Not intended to exclude other methods

Single Line
- The space between conveyor side frame and netting must be equal to or greater than the conveyor between-frame (B.F.) dimension.
- The vertical netting must extend above conveyor guardrail a minimum of 2/3 the maximum carton height.

Multiple Lines
- The spacing between parallel lines should be less than minimum carton size.
- The space between the conveyor outer side frame and the netting must be equal to or greater than the conveyor between-frame (B.F.) dimension.
- The vertical netting must extend above the conveyor guardrail a minimum of 2/3 the maximum carton height.
Lines Running on Platforms
- A platform may serve as spill guarding if it properly protects areas below. Netting may be installed on the handrail to contain spilled product or cartons.

Lines Running Parallel to Catwalks
- A catwalk may serve as spill guarding if it properly protects areas below. Netting may be installed on the handrail to contain spilled product or cartons.

90 Degree Transfers and Merges
- Transfers and merges are more susceptible to product jams due to causes such as variation in product integrity, changes in product direction, and timing of conveyor equipment.
• The volume of product that can be collected in these areas must be considered in the design of the netting system. Use of jam detection devices in such areas is recommended in addition to spill guarding.

Testing
1. Determine where the weakest area(s) of the spill guarding is located. (There may be several such points in the netting system.)
2. Assemble a test load that simulates the maximum carton or load to be handled by the conveyor equipment.
3. Drop the load from the maximum height. Inspect the netting and connection points. The netting should return to its original shape. There must be no tears or fretting.

Inspection/Maintenance
• To avoid overloading the netting system remove spilled product immediately and inspect for damage to the netting system.
• Yearly inspections are necessary. Inspect all cabling and fasteners to make sure they are tight and secure. Inspections are also required any time work is performed in the area that requires removing or modifying the netting. Particular attention is required if welding or grinding is performed in the area.